CAS 38051-10-4 Bis(chloromethyl)propane-1,3diyl tetrakis-(2-chloroethyl) bis(phosphate) (V6) C₁₃H₂₄Cl₆O₈P₂

Summary of Health Effects

V6 may harm development based on animal studies which showed that rats fed V6 birthed lower weight pups.

How is V6 used?

V6 has been used as a flame retardant in polyurethane foam, including foam present in consumer and baby products, carpet pads and tent fabric. It is reportedly used in furniture and automobile foam.^{1,2} Tris(2-chloroethyl) phosphate (TCEP) is present as an impurity in commercial mixtures of V6.³

Toxicity: What are its health effects?

The State of California classified TCEP, an impurity of V6, as a carcinogen under Proposition 65.³ V6 is characterized by the Environmental Protection Agency (EPA) as a moderate hazard for carcinogenicity and

reproductive toxicity based on the toxicity of closely related structural analogs.⁴ The EPA characterized V6 as a high hazard for developmental toxicity based on an increased number of runts and reduced weights of offspring observed in a 2-generation study in rats.⁴

Exposure: How can a person come in contact with it?

A person may come in contact with V6 by breathing in or eating dust containing V6 or by skin contact with contaminated dust or consumer products containing V6. A Boston study detected V6 at higher levels in car dust than in house dust.¹ V6 was detected in fingernails sampled from a Norwegian cohort.⁵ V6 was detected in waste streams from wastewater treatment plants in Canada.⁶

References

- 1. Fang, M., Webster, T.F., Gooden, D., Cooper, E.M., McClean, M.D., Carignan, C., Makey, C., Stapleton, H.M. (2013). Investigating a novel flame retardant known as V6: measurements in baby products, house dust, and car dust. *Environmental Science & Technology*, 47(9), 4449-54.
- Stapleton, H.M., Klosterhaus, S., Keller, A., Ferguson, P.L., van Bergen, S., Cooper, E., Webster, T.F., Blum, A. (2011). Identification of flame retardants in polyure thane foam collected from baby products. *Environmental Science & Technology*, 45(12), 5323-31.

- 3. State of California OEHHA (2016). *Chemicals known to the state to cause cancer or reproductive toxicity*. 2016 August; Retrieved from <u>oehha.ca.gov/proposition-65/proposition-65-list</u>
- 4. U.S. Environmental Protection Agency (2015). *Flame retardants used in flexible polyurethane foam: An alternatives assessment update*. U.S. Environmental Protection Agency. Retrieved from www.epa.gov/sites/production/files/2015-08/documents/ffr final.pdf
- 5. Alves, A., Giovanoulis, G., Nilsson, U., Erratico, C., Lucattini, L., Haug, L.S., Jacobs, G., de Wit, C.A., Leonards, P.E.G., Covaci, A., Magner, J. & Voorspoels, S. (2017). Case study on screening emerging pollutants in urine and nails. *Environmental Science & Technology*, 51, 4046-4053.
- 6. Woudneh, M.B., Benskin, J.P., Wang, G.H., Grace, R., Coreen Hamilton, M., Cosgrove, J.R. (2015). Quantitative determination of 13 organophosphorus flame retardants and plasticizers in a wastewater treatment system by high performance liquid chromatography tandem mass spectrometry. *Journal of ChromatographyA*, 1400, 149–55.