Bis(2-ethylhexyl) tetrabromophthalate (TBPH) C₂₄H₃₄Br₄O₄

Summary of Health Effects

TBPH may cause problems with development and harm the reproductive system based on animal studies on pregnant rodents and their offspring.

How is TBPH used?

TPBH is a component of the widely used fire-retardant mixture Firemaster 550 (FM 550).¹
TBPH is also a component of the commercial fire-retardant mixture DP 45.² TBPH is used as a flame retardant in flexible polyurethane foam, neoprene, rubber, appliances, and construction and electrical materials.³ A 2011 study detected TBPH or TBB in various children's products including car seats, changing table pads, portable mattresses and rocking chairs.⁴

Toxicity: What are its health effects?

TBPH is characterized by the U.S. Environmental Protection Agency (EPA) as a moderate hazard for developmental, reproductive, neurological, and repeated-dose exposures based on toxicity in rodent studies to TBPH-containing flame retardant mixtures and structural chemical analogs. TBPH was added to EPA's 2014 Toxic Substance Control Act work plan due to developmental, acute and chronic toxicity, and moderate environmental persistence and bioaccumulation potential. Pregnant rats fed a commercial mixture containing TBPH had altered thyroid function

and offspring with significantly increased weights. Also, early puberty occurred in female pups and male pups had significantly increased left ventricular thickness and blood glucose levels.⁶

Fetuses of pregnant rats fed the TBPH metabolite, TBMEHP, for two days had liver damage and males had a significantly increased number of altered seminiferous cords per cord area.²

Exposure: How can a person come in contact with it?

A person may come in contact with TBPH by by breathing it in, eating, or skin contact with contaminated dust, or skin contact with TBPH-containing consumer products. EPA characterized TBPH as a high hazard for persistence and bioaccumulation based on half-life and the detection TBPH in various species from upper levels of the food chain.¹ TBPH has been detected in outdoor air, residential and non-residential indoor dust, car dust, sewage sludge and in marine mammals.⁷⁻

In a 2010-2011 Northern California study, TBPH was detected in all the indoor dust samples gathered from childcare centers.⁷ A 2008-2009 study detected TBPH in the blood serum and breast milk of women residing in Québec, Canada.¹² A 2014 study in Indiana also found TBPH in the blood serum of adults.¹³

References

- 1. U.S. Environmental Protection Agency (EPA) (2015). Flame retardants used in flexible polyurethane foam: An alternatives assessment update. Environmental Protection Agency. Retrieved from www.epa.gov/sites/production/files/2015-08/documents/ffr final.pdf
- 2. Springer, C., Dere, E., Hall, S.J., McDonnell, E.V., Roberts, S.C., But, C.M., Stapleton, H.M., Watkins, ...Boekelheide, K. (2012). Rodent thyroid, liver, and fetal testis toxicity of the monoester metabolite of bis-(2-ethylhexyl) tetrabromophthalate (tbph), a novel brominated flame retardant present in indoor dust. *Environmental Health Perspectives*, 120(12), 1711-9.
- 3. U.S. Environmental Protection Agency (EPA). TSCA Work plan chemical technical supplement Use and exposure of the brominated phthalates cluster (BPC) chemicals -brominated phthalates cluster flame retardants. Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention. Retrieved from www.epa.gov/sites/production/files/2015-09/documents/bpc_data_needs_assessment_technical_supplement_hazard_assessment.pdf
- 4. Stapleton, H.M., Klosterhaus, S., Keller, A., Ferguson, P.L., van Bergen, S., Cooper, E., Webster, T.F., Blum, A. (2011). Identification of flame retardants in polyurethane foam collected from baby products. *Environmental Science & Technology*, 45, 5323-5331.
- 5. U.S. Environmental Protection Agency (EPA) (2015). *TSCA work plan chemical problem formulation and initial assessment Chlorinated phosphate ester cluster flame retardants*. Environmental Protection Agency. Retrieved from www.epa.gov/sites/production/files/2015-09/documents/cpe fr cluster problem formulation.pdf
- 6. Patisaul, H.B., Roberts, S.C., Mabrey, N., McCaffrey, K.A., Gear, R.B., Braun, J., Belcher, S.M., Stapleton H.M. (2013). Accumulation and endocrine disrupting effects of the flame retardant mixture Firemaster(R) 550 in rats: an exploratory assessment. *Journal of Biochemical and Molecular Toxicology*, 27(2), 124-36.
- 7. Bradman, A., Castorina, R., Gaspar, R., Nishioka, M, Colon, M., Weathers, W., Egeghy, P.P.,...McKone, T.E. (2014). Flame retardant exposures in California early childhood education environments. *Chemosphere*, 116, 61-6.
- 8. May, Y., Venier, M., Hites, R.A. (2012). 2-Ethylhexyl tetrabromobenzoate. *Environmental Science & Technology*, 46(1), 204-208.
- 9. Lam, J.C.W., Lau, R.K.F., Murphy, M.B., Lam, P.K.S. (2009). Temporal trends of hexabromocyclododecanes (HBCDs) and polybrominated diphenyl ethers (PBDEs) and detection of two novel flame retardants in marine mammals from Hong Kong, South China. *Environmental Science & Technology*, 43(18), 6944-6949.
- 10. La Guardia, M.J., Hale, R.C., Harvey, E., Chen, D. (2010). Flame retardants and other organohalogens detected in sewage sludge by electron capture negative ion mass spectrometry. *Environmental Science & Technology*, 44(12), 4658-4664.
- 11. Davis, E.F., Klosterhaus S.L., Stapleton, H.M. (2012). Measurement of flame retardants and triclosan in municipal sewage sludge and biosolids. *Environmental Science & Technology*, 40, 1-7.
- 12. Zhou, S.N., Buchar, A., Siddique, S., Takser, L., Abdelouahab, N., Zhu, J. (2014). Measurements of selected brominated flame retardants in nursing women: implications for human exposure. *Environmental Science & Technology*, 48(15), 8873-80.
- 13. Liang-Ying, L., Ronald, K.H., Hites, A., and Salamova, A. (2016). Hair and nails as noninvasive biomarkers of human exposure to brominated and organophosphate flame retardants. *Environmental Science & Technology*, 50, 3065–3073.