
CAS 80-05-7 **Bisphenol A (BPA)** C₁₅H₁₆O₂

Summary of Health Effects

Even at low doses, bisphenol A (BPA) can affect the reproductive system of animals and affect how babies develop. It can also affect how hormones are made in the bodies of animals.

How is BPA used?

BPA is a high-production volume chemical used to manufacture strong polycarbonate plastics, which can be found in toys, plasticware, dishware, bottles, thermal paper and food can liners.¹

Toxicity: What are its health effects?

BPA causes developmental and reproductive toxicity at high doses according to animal studies.^{1,2} Some studies have linked BPA with reproductive, developmental, and systemic effects in humans.^{1,2,3}

Recent studies using low-dose approaches and examining different adverse effects have found subtle effects in animals at very low concentrations, suggesting that even low-level exposures have potential to cause undesirable effects.⁴ Legislation in Vermont prohibits the manufacture, sale or distribution in commerce in the state any of the following: reusable food or beverage container containing BPA and infant formula or baby food stored in a plastic container, can or jar containing BPA.⁵

BPA is on the European Union's list of substances with documented endocrine-disrupting effects.⁶

Exposure: How can a person come in contact with it?

A person can come in contact with BPA by eating and drinking contaminated food and drinks, or from skin contact.¹

The 2014 National Health and Nutrition Examination Survey (NHANES) results show that BPA was detected in the urine of 92.6% of the population aged 6 and older.⁷ Adjusted results show higher levels in children than adults.⁷ In a reference population of 394 adults in the U.S., BPA was detected in 95% of samples.⁸

References

 California Environmental Protection Agency, Office of Environmental Health Hazard Assessment (2009). *Toxicological profile for bisphenol A*. Retrieved from <u>www.opc.ca.gov/webmaster/ftp/project_pages/MarineDebris_OEHHA_ToxProfiles/Bisphenol%20A%20Final.pdf</u>

- 2. U.S. Department of Health and Human Services, National Toxicology Program, Center for the Evaluation of Risks to Human Reproduction (2008). *CERHR Monograph on the potential human reproductive and developmental effects of Bisphenol A*. Retrieved from www.ncbi.nlm.nih.gov/pubmed/19407859
- U.S. Environmental Protection Agency (2017). America's Children and the Environment (ACE): Biomonitoring bisphenol A. Retrieved from www.epa.gov/sites/production/files/2017-08/documents/ace3 bpa updates 8-4-17.pdf
- 4. U.S. Environmental Protection Agency (2010). *Bisphenol A (BPA) action plan*. Retrieved from <u>www.epa.gov/sites/production/files/2015-09/documents/bpa_action_plan.pdf</u>
- 5. Vermont Title 18 Chapter 29 §1512 Bisphenol A. Retrieved from legislature.vermont.gov/statutes/section/18/029/01512
- 6. Danish Ministry of the Environment, Danish Environmental Protection Agency. *The EU list of potential endocrine disruptors*. Retrieved from eng.mst.dk/chemicals/chemicals-in-products/endocrine-disruptors/the-eu-list-of-potential-endocrine-disruptors/
- 7. Centers for Disease Control and Prevention (2014). *Fourth report on human exposure to environmental chemicals, updated tables, (August, 2014).* Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. Retrieved from www.cdc.gov/exposurereport/
- Calafat, A.M., Kuklenyik, Reidy, J.A., Caudill, S.P., Ekong, J., Needham, L.L. (2005). Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environmental Health Perspectives, 113, 391-5. Retrieved from <u>www.ncbi.nlm.nih.gov/pubmed/15811827</u>